Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The β -polymorph of phenazine

Wojciech Jankowski and Maria Gdaniec*

Faculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland Correspondence e-mail: magdan@amu.edu.pl

Received 7 December 2001 Accepted 22 January 2002 Online 28 February 2002

In β -phenazine, C₁₂H₉N₂, the molecules show a sandwich herring-bone type of packing. The experimental crystal structure shows very good agreement with that predicted earlier from systematic searches of potential packing arrangements for the known unit cell [Hammond, Roberts, Smith & Docherty (1999). *J. Phys. Chem. B*, **103**, 7762–7770].

Comment

It is well known that phenazine crystallizes in two polymorphic forms. The structure of the stable phase (α -phenazine, m.p. 449.5 K) was first determined by Herbstein & Schmidt (1955) and later redetermined by Woźniak *et al.* (1991). The existence of a second polymorph was also first recognized by Herbstein & Schmidt (1955), who reported the space group and unit-cell parameters of the β phase and described its morphology. To our knowledge, no other experimental data have been reported on the less stable polymorph to date, and β -phenazine seems to exemplify a disappearing polymorph (Dunitz & Bernstein, 1995). Nevertheless, Hammond *et al.* (1999), using a systematic search of potential packing arrangements, predicted the crystal structure of the β polymorph.

Recently, by chance, we obtained good quality single crystals of β -phenazine, (I), from a crystallization mixture consisting of phenazine, 1,3,5-trihydroxybenzene and ethanol, by slow evaporation of the solution. In the first crop, we isolated several block-like crystals of α -phenazine and two rod-like crystals of dimensions $1.0 \times 0.2 \times 0.2$ mm which, after measuring the unit-cell parameters, turned out to be the β form. The melting point of these crystals (431 K) is 18 K lower than that of the α phase (449 K). The crystal structure of β -phenazine, (I), is presented here.

The bond lengths and angles of the phenazine molecule in both polymorphic forms are very similar. In contrast with α -phenazine, for which a γ arrangement (Desiraju & Gavezzoti, 1989) of the heteroaromatic rings has been observed, β -phenazine shows a sandwich herring-bone type of packing.

The common structural motif for the two polymorphs is a chain of molecules connected *via* pairs of $C-H\cdots N$ interactions. For the α -form, $H\cdots N = 2.89$ Å and $C-H\cdots N = 146^{\circ}$. For the β -form, $H3\cdots N13^{i} = 2.71$ (2) Å and $C3-H3\cdots N13^{i} = 156.5$ (16)°, and $H8\cdots N14^{ii} = 2.71$ (2) Å and $C8-H8\cdots N14^{ii} = 153.9$ (16)° [symmetry codes: (i) x, y, 1 + z; (ii) x, y, z - 1]. The interplanar distance between adjacent phenazine molecules along the chain is 1.26 Å in the α polymorph and 1.088 (3) Å in the β form. In the β polymorph, there is an additional short $C-H\cdots N$ contact between molecules related by an n glide [H5 \cdots N14ⁱⁱⁱ 2.60 (2) Å and C5-H5 \cdots N14ⁱⁱⁱ 145.1 (16)°; symmetry code: (iii) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$].

The structure determined from the single crystal of (I) is very close to that predicted by Hammond *et al.* (1999), as can be seen from Fig. 2, which shows the superposition of the postulated and experimentally determined crystal structures. The π - π stack distance in the β -phenazine structure is 3.498 (3) Å (predicted distance 3.53 Å), the centroid–centroid distance within the stack is 3.80 Å (predicted 3.81 Å) and the herring-bone angle is 71.4 (3)° (predicted 72.9°).

Figure 1

A view of the molecule of β -phenazine with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2

The superposition of the postulated (dashed lines) and experimentally determined (solid lines) crystal structures of β -phenazine.

Experimental

Good quality single crystals of β -phenazine were formed in a crystallization mixture consisting of phenazine (0.694 mmol; Fluka), 1,3,5-trihydroxybenzene (0.395 mmol; Fluka) and ethanol (10 ml) after slow evaporation of the solution.

Crystal data

-
$C_{12}H_8N_2$
$M_r = 180.20$
Monoclinic, $P2_1/n$
a = 11.6418 (12) Å
b = 11.5449 (11) Å
c = 6.8981 (7) Å
$\beta = 99.476 \ (10)^{\circ}$
$V = 914.48 (16) \text{ Å}^3$
Z = 4

Data collectionKuma KM-4 CCD diffractometer ω scans4500 measured reflections1604 independent reflections1272 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.149$ S = 1.231604 reflections 160 parameters All H-atom parameters refined $R_{int} = 0.031$ $\theta_{max} = 25^{\circ}$ $h = -13 \rightarrow 13$ $k = -13 \rightarrow 8$ $l = -8 \rightarrow 8$ $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0716P)^{2} + 0.0381P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta \phi_{o} = 0.14 \phi^{3/-3}$

 $D_x = 1.309 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 2800

reflections $\theta = 3.7-25.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 (2) KPrism, yellow $0.3 \times 0.2 \times 0.2 \text{ mm}$

$\Delta \rho_{\text{max}} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.12 \text{ e } \text{\AA}^{-3}$ Extinction correction: *SHELXL*97 (Sheldrick, 1997) Extinction coefficient: 0.026 (7)

Refined C-H distances are in the range 0.95 (2)-1.01 (2) Å.

Data collection: *CRYSALIS* (Oxford Diffraction, 2001); cell refinement: *CRYSALIS*; data reduction: *CRYSALIS*; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989); software used to prepare material for publication: *SHELXL97*.

Table 1

Selected geometric parameters (Å, °).

C1-N13	1.341 (2)	C7-N13	1.343 (2)
C1-C6	1.421 (2)	C7-C8	1.419 (3)
C1-C2	1.433 (2)	C7-C12	1.435 (2)
C2-N14	1.344 (2)	C8-C9	1.357 (3)
C2-C3	1.423 (2)	C9-C10	1.419 (3)
C3-C4	1.353 (3)	C10-C11	1.341 (3)
C4-C5	1.415 (3)	C11-C12	1.421 (3)
C5-C6	1.346 (3)	C12-N14	1.341 (2)
N13-C1-C6	119.88 (16)	N13-C7-C12	121.42 (16)
N13-C1-C2	121.68 (16)	C8-C7-C12	118.81 (17)
C6-C1-C2	118.43 (17)	C9-C8-C7	120.29 (19)
N14-C2-C3	119.68 (15)	C8-C9-C10	120.6 (2)
N14-C2-C1	121.30 (16)	C11-C10-C9	121.0 (2)
C3-C2-C1	119.02 (17)	C10-C11-C12	120.62 (19)
C4-C3-C2	120.04 (18)	N14-C12-C11	119.89 (16)
C3-C4-C5	120.9 (2)	N14-C12-C7	121.45 (16)
C6-C5-C4	120.83 (19)	C11-C12-C7	118.66 (17)
C5-C6-C1	120.73 (18)	C1-N13-C7	116.99 (14)
N13-C7-C8	119.77 (16)	C12-N14-C2	117.14 (14)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1149). Services for accessing these data are described at the back of the journal.

References

Desiraju, G. R. & Gavezzoti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621–623.

Dunitz, J. D & Bernstein, J. (1995). Acc. Chem. Res. 28, 193-200.

Hammond, R. B., Roberts, K. J., Smith, E. D. L. & Docherty, R. J. (1999). J. Phys. Chem. B, 103, 7762–7770.

Herbstein, H. & Schmidt, G. M. J. (1955). Acta Cryst. 8, 399–405.

Oxford Diffraction (2001). *CRYSALIS*. Version 1.168. Oxford Diffraction Ltd, Oxford, England.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Woźniak, K., Kariuki, B. & Jones, W. (1991). Acta Cryst. C47, 1113-1114.